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The shape optimization of a structure,  C R%, obeying a static perfect plastic law presents the difficulty
of having as state constraint a variational inequality: noting 0Q = I'y UTy with Ty NIy =0, find 0 € MNK
and v € BD(Q) [6] such that,
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where o is the stress tensor, u the displacement, g stands for a force on a part of the surface, f a volume force,
e(v) = 5 (Vo +'Vu), C the Hooke tensor, Hf = {v € H'(Q)%lv =0 on I}, K = {7 € L*(Q)**?|¢() < 0}
a cone, ¢ the yield function and M = {7 € L?(Q)?™?|7 ='7, 7n = g on 'y }. The sensitivity of the solution
(0, u) with respect to the shape, was studied for a particular case in [5], using the results of [3], pointing its
non-differentiability.

In order to avoid using subgradient algorithms, it is easier to regularize the system (1). Using the projection
on the convex cone K, one can use a Perzyna penalty type (£|o0 — Pk (0)|?) such as in [2]. Or one can remark
that the problem can be rewritten as:

(2) /QPK(CB (w)) :e(v) dz :/

g~vds+/ f-vdx, Yve H} (Q),
Tn Q
where Pk is the orthognal projection on K. This formulation is analyzed for instance in [4], and is used to

numerically compute the solutions of (1) even if it is possible that (2) admits no solution.

Our goal is to use (2), smoothing the projection Pk for the particular case of the Von Mises criterion in
such a way that the problem admits a unique solution and is differentiable with respect to the shape. Then
we compute the derivative of objectives, such as the displacement of a group of points, thanks to the adjoint
method. Finally, using the levelset method [1], we present some shape optimization results.
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