SHAPE OPTIMIZATION FOR INCOMPRESSIBLE LAMINAR FLOWS

PASCAL FREY 1,2, FLORIAN OMNES 1,2, YANNICK PRIVAT 1

1 Sorbonne Universités, UPMC Univ Paris 6, UMR7598, Laboratoire J.L. Lions (LJLL), F-75005, Paris, France
2 Sorbonne Universités, UPMC Univ Paris 6, Institut du calcul et de la simulation (ICS), F-75005, Paris, France

Abstract. In the context of incompressible laminar flows governed by the (Navier-)Stokes equations, we numerically investigate the problem of determining the optimal shape of a duct with several inlets/outlets. This problem is modeled in terms of minimization/maximization of dissipated energy or vorticity functionals, under the aforementioned geometrical constraints. We introduce a Lagrangian type algorithm where steps are refined to deal with the complexity of such a problem.

1. Introduction

We investigate the following problem

$$\min_{\Omega \in \mathcal{O}_{ad}, G(\Omega) = 0} J(\Omega, u_\Omega)$$

where J depends on both Ω and the solution u_Ω of (Navier-)Stokes equations. \mathcal{O}_{ad} is associated to the required regularity and box constraints, while G is associated to geometrical constraints. The present work has applications in biomedicine, namely for the optimal design of vascular bypasses.

2. Numerical results

\[\Gamma_{in} \quad \Gamma \quad \Gamma_{out} \]
\[\Gamma_{in} \quad \Gamma \quad \Gamma_{out} \]

Figure 1. Left : configuration (I) ; right : configuration (II). $\Gamma_{in} (\mathbf{u} = u_0)$ and Γ_{out} ($\sigma(\mathbf{u}, p)n = -p_0 n$) are allowed to move tangentially, Γ is allowed to move normally.

In the case $G(\Omega) = |\Omega| - V_0$, we identify several behaviors of the minimizing sequences, depending both on the physical model and the boundary conditions. For instance we either observe the closing of branches thus suggesting a non-existence phenomenon, or the convergence of the algorithm to a dyadic tree shape.

References