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ABSTRACT

We consider a data completion method for the Cauchy
problem of Laplace equation. For an approximate solu-
tion given by any one of algorithms of the data comple-
tion methods, we give the moment of the error between
the true solution and the approximate one. This error
indicator is used to improve the approximate solution,
to give a knowledge of stability and can be used as a
stopping criterion.

1. MAIN FACTS

Let Ω be a Lipschitz bounded domain in R2. ν is the
normal unit to the boundary ∂Ω, oriented outward. We
assume that ∂Ω is partitioned into two open connected
portions ΓC and ΓI such that ∂Ω = ΓI ∪ ΓC . Each of
them is of a non-vanishing measure. The data comple-
tion problem for the Laplace equation is given by :
Find (ϕ,ψ) on ΓI such that there exists a temperature
field u satisfying 

∆u = 0 in Ω,
u = f on ΓC ,
∂u

∂ν
= φ on ΓC ,

(1)

with ϕ = u and ψ =
∂u

∂ν
on ΓI .

Let (uh, wh) be an approximation of (u,
∂u

∂ν
) on ΓI ,

by applying any one of the data completion methods
see for example [1, 4], we define two error functions on

ΓI , e1 = u|ΓI
− uh and e2 =

∂u

∂ν
|ΓI
− wh.

In this work, we propose a new procedure, based
on the moment technique [2], to explicitly approxi-
mate the error e1 and the error e2. More precisely,
let {vj , j ∈ N} be a sequence of orthonormal functions

such that ∆vj = 0, ∀j ∈ and Span{vj |Γi}∞j=0 = L2(ΓI).

Assume (1) has a solution u such that u|ΓI
∈ L2(ΓI).

Let mk
j , j ∈ N, be the moments of ek, k = 1, 2 defined

by mk
j = 〈ek, vj〉 =

∫
ΓI
ekvjds, where 〈., .〉 is the inner

product of L2(ΓI). By means of the given data and vj ,
j ∈ N, we give mk

j k = 1, 2. The obtained approxima-
tion of e1 and e2 permits to build an a posteriori error
estimation of residual type [3] in order to improve the
given approximate solution and to have a stopping cri-
terion. We give some convergence and stability results
and we introduce an algorithm for solving the two mo-
ment problems. To illustrate the proposed approach,
we give some numerical experiments.
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